Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. I. Regions of linear interaction.
نویسندگان
چکیده
The principal neurons of the dorsal cochlear nucleus have complex response properties, many of which are classified as type IV. These units integrate energy in the acoustic signal in a nonlinear fashion; for example, at high sound levels the response to a noise of narrow bandwidth and to a band-reject filtered noise with a spectral notch of the same bandwidth may both be inhibitory. However, the sum of these two stimuli, which is broadband noise (BBN), generally gives an excitatory response. In other situations, linear interactions among stimulus components are observed. In this paper, three regimes of approximate linearity were identified. First, best-frequency (BF) tones and equal-energy narrow noisebands centered at BF evoke almost the same response, which is consistent with a stage of linear filtering followed by a nonlinearity that generates the rate responses of the neuron. Second, for sounds close to threshold (10-15 dB re threshold), energy over the full bandwidth of the unit is integrated linearly. Within this regime, responses to the narrow noiseband and the spectral notch mentioned above do sum to equal the response to BBN. Finally, two noisebands centered at different frequencies, such that their sum is a notch in a broad band of noise, sum linearly at low sound levels; the degree of linearity improves as the separation between the noisebands increases. The results are interpreted in terms of a model of type IV response generation containing two inhibitory interneurons: type II units, which are active for narrowband stimuli, including tones, and the wideband inhibitor, which is active for broadband stimuli. In most cases, the onset of nonlinearity occurs for stimuli that significantly activate the type II inhibitory interneuron.
منابع مشابه
Linear and nonlinear spectral integration in type IV neurons of the dorsal cochlear nucleus. II. Predicting responses with the use of nonlinear models.
Two nonlinear modeling methods were used to characterize the input/output relationships of type IV units, which are one principal cell type in the dorsal cochlear nucleus (DCN). In both cases, the goal was to derive predictive models, i.e., models that could predict the responses to other stimuli. In one method, frequency integration was estimated from response maps derived from single tones an...
متن کاملLinear and nonlinear pathways of spectral information transmission in the cochlear nucleus.
At the level of the cochlear nucleus (CN), the auditory pathway divides into several parallel circuits, each of which provides a different representation of the acoustic signal. Here, the representation of the power spectrum of an acoustic signal is analyzed for two CN principal cells-chopper neurons of the ventral CN and type IV neurons of the dorsal CN. The analysis is based on a weighting fu...
متن کاملTemporal and binaural properties in dorsal cochlear nucleus and its output tract.
The dorsal cochlear nucleus (DCN) is one of three nuclei at the terminal zone of the auditory nerve. Axons of its projection neurons course via the dorsal acoustic stria (DAS) to the inferior colliculus (IC), where their signals are integrated with inputs from various other sources. The DCN presumably conveys sensitivity to spectral features, and it has been hypothesized that it plays a role in...
متن کاملاثر تحریک الکتریکی هسته رافه خلفی بر پاسخ برانگیخته نورونهای لایه IV و V قشر بارل (بشکهای) در موش صحرایی
Effect of the Dorsal Raphe Nucleus Electrical Stimulation on Evoked Response of the IV Layers and V Barrel Cortical Neurons in Rat M.R Afarinesh MSc , V. Sheibani PhD , R. Farazifard MSc 1, M. Abasnegad PhD , A. Shamsi zadeh MSc Received: 17/09/06 Sent for Revision: 13/03/07 Received Revised Manuscript: 13/06/07 Accepted: 27/06/07 Background and Objective: Seretonergic pathway is one of the neu...
متن کاملA receptive field for dorsal cochlear nucleus neurons at multiple sound levels
Neurons in the dorsal cochlear nucleus (DCN) exhibit nonlinearities in spectral processing, which make it difficult to predict the neurons' responses to stimuli. Here, we consider two possible sources of nonlinearity: non-monotonic responses as sound level increases due to inhibition; and interactions between frequency components. A spectral weighting function model of rate responses is used; t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 78 2 شماره
صفحات -
تاریخ انتشار 1997